
Radiation treatment planning

[1]: import cvxpy as cp
import numpy as np
import matplotlib.pyplot as plt

[2]: # Load data
n = 300
mtumor = 100
mother = 400
Atumor = np.loadtxt('Atumor.csv', delimiter=',')
Aother = np.loadtxt('Aother.csv', delimiter=',')
Bmax = 10
Dtarget = 1
Dother = 0.25

[3]: tumor,n = Atumor.shape
other,n = Aother.shape
tumor,other,n

[3]: (100, 400, 300)

So T = {1, 2, · · · , 100}, n = 300,m = 500. Recall that the doses were given by d = Ab.

Solving the original optimization problem

Here we solve the problem

min
∑
i/∈T

max(di −Dother, 0)

s.t. d = Ab

di ≥ Dtarget ∀i ∈ T
0 ≤ bi ≤ Bmax ∀1 ≤ i ≤ n

[4]: dtumor = cp.Variable(tumor, 'dtumor')
dother = cp.Variable(other, 'dother')
b = cp.Variable(n, 'b')
f = cp.maximum(dother - Dother, 0)
obj = cp.sum(f)

1



cons = [Aother @ b == dother, Atumor @ b == dtumor, dtumor >= Dtarget, b >= 0,␣
↪→Bmax >= b]

problem = cp.Problem(cp.Minimize(obj), cons)
problem.solve(verbose = True, solver = cp.ECOS)

===============================================================================
CVXPY
v1.4.2

===============================================================================
(CVXPY) Mar 19 06:40:33 PM: Your problem has 800 variables, 5 constraints, and 0
parameters.
(CVXPY) Mar 19 06:40:33 PM: It is compliant with the following grammars: DCP,
DQCP
(CVXPY) Mar 19 06:40:33 PM: (If you need to solve this problem multiple times,
but with different data, consider using parameters.)
(CVXPY) Mar 19 06:40:33 PM: CVXPY will first compile your problem; then, it will
invoke a numerical solver to obtain a solution.
(CVXPY) Mar 19 06:40:33 PM: Your problem is compiled with the CPP
canonicalization backend.
-------------------------------------------------------------------------------

Compilation
-------------------------------------------------------------------------------
(CVXPY) Mar 19 06:40:33 PM: Compiling problem (target solver=ECOS).
(CVXPY) Mar 19 06:40:33 PM: Reduction chain: Dcp2Cone -> CvxAttr2Constr ->
ConeMatrixStuffing -> ECOS
(CVXPY) Mar 19 06:40:33 PM: Applying reduction Dcp2Cone
(CVXPY) Mar 19 06:40:33 PM: Applying reduction CvxAttr2Constr
(CVXPY) Mar 19 06:40:33 PM: Applying reduction ConeMatrixStuffing
(CVXPY) Mar 19 06:40:33 PM: Applying reduction ECOS
(CVXPY) Mar 19 06:40:33 PM: Finished problem compilation (took 1.760e-02
seconds).
-------------------------------------------------------------------------------

Numerical solver
-------------------------------------------------------------------------------
(CVXPY) Mar 19 06:40:33 PM: Invoking solver ECOS to obtain a solution.
-------------------------------------------------------------------------------

Summary
-------------------------------------------------------------------------------
(CVXPY) Mar 19 06:40:33 PM: Problem status: optimal
(CVXPY) Mar 19 06:40:33 PM: Optimal value: 1.388e+00
(CVXPY) Mar 19 06:40:33 PM: Compilation took 1.760e-02 seconds
(CVXPY) Mar 19 06:40:33 PM: Solver (including time spent in interface) took
1.676e-01 seconds

[4]: 1.3882005424049697



[5]: #d = np.concatenate(np.array(dother.value), np.array(dtumor.value))
d = [0] * (tumor+other)
for i in range(tumor):

d[i] = dtumor.value[i]
for i in range(other):

d[i+tumor] = dother.value[i]
plt.hist(d, bins=225)
plt.xticks(np.arange(0, 2.25, 0.25))
plt.show()

Solving the (coverted) linear optimization problem

min
∑
i/∈T

ui

s.t. d = Ab

di ≥ Dtarget ∀i ∈ T
0 ≤ bi ≤ Bmax ∀1 ≤ i ≤ n

0 ≤ ui ∀1 ≤ i ≤ m, i /∈ T
di −Dother ≤ ui ∀1 ≤ i ≤ m, i /∈ T .



[6]: u = cp.Variable(other, 'u')
dtumor = cp.Variable(tumor, 'dtumor')
dother = cp.Variable(other, 'dother')
b = cp.Variable(n, 'b')
f = cp.maximum(dother - Dother, 0)
obj = cp.sum(f)
cons = [Aother @ b == dother, Atumor @ b == dtumor, dtumor >= Dtarget, b >= 0,␣
↪→Bmax >= b, u >= 0, u >= dother - Dother]

problem = cp.Problem(cp.Minimize(obj), cons)
problem.solve(verbose = True, solver = cp.ECOS)

===============================================================================
CVXPY
v1.4.2

===============================================================================
(CVXPY) Mar 19 06:40:33 PM: Your problem has 1200 variables, 7 constraints, and
0 parameters.
(CVXPY) Mar 19 06:40:33 PM: It is compliant with the following grammars: DCP,
DQCP
(CVXPY) Mar 19 06:40:33 PM: (If you need to solve this problem multiple times,
but with different data, consider using parameters.)
(CVXPY) Mar 19 06:40:33 PM: CVXPY will first compile your problem; then, it will
invoke a numerical solver to obtain a solution.
(CVXPY) Mar 19 06:40:33 PM: Your problem is compiled with the CPP
canonicalization backend.
-------------------------------------------------------------------------------

Compilation
-------------------------------------------------------------------------------
(CVXPY) Mar 19 06:40:33 PM: Compiling problem (target solver=ECOS).
(CVXPY) Mar 19 06:40:33 PM: Reduction chain: Dcp2Cone -> CvxAttr2Constr ->
ConeMatrixStuffing -> ECOS
(CVXPY) Mar 19 06:40:33 PM: Applying reduction Dcp2Cone
(CVXPY) Mar 19 06:40:33 PM: Applying reduction CvxAttr2Constr
(CVXPY) Mar 19 06:40:33 PM: Applying reduction ConeMatrixStuffing
(CVXPY) Mar 19 06:40:33 PM: Applying reduction ECOS
(CVXPY) Mar 19 06:40:33 PM: Finished problem compilation (took 2.240e-02
seconds).
-------------------------------------------------------------------------------

Numerical solver
-------------------------------------------------------------------------------
(CVXPY) Mar 19 06:40:33 PM: Invoking solver ECOS to obtain a solution.
-------------------------------------------------------------------------------

Summary
-------------------------------------------------------------------------------
(CVXPY) Mar 19 06:40:33 PM: Problem status: optimal
(CVXPY) Mar 19 06:40:33 PM: Optimal value: 1.388e+00
(CVXPY) Mar 19 06:40:33 PM: Compilation took 2.240e-02 seconds
(CVXPY) Mar 19 06:40:33 PM: Solver (including time spent in interface) took



1.834e-01 seconds

[6]: 1.3882005424141164

[7]: #d = np.concatenate(np.array(dother.value), np.array(dtumor.value))
d = [0] * (tumor+other)
for i in range(tumor):

d[i] = dtumor.value[i]
for i in range(other):

d[i+tumor] = dother.value[i]
plt.hist(d, bins=225)
plt.xticks(np.arange(0, 2.25, 0.25))
plt.show()

So both of these optimization problems give the same solution.


