Radiation treatment planning

[1]: | import cvxpy as cp
import numpy as np
import matplotlib.pyplot as plt

[2]: # Load data

n = 300

mtumor = 100

mother = 400

Atumor = np.loadtxt('Atumor.csv', delimiter=',"')
Aother = np.loadtxt('Aother.csv', delimiter=',')
Bmax = 10

Dtarget = 1

Dother = 0.25

[3]: | tumor,n = Atumor.shape
other,n = Aother.shape
tumor,other,n

[3]: (100, 400, 300)

So T ={1,2,---,100},n = 300, m = 500. Recall that the doses were given by d = Ab.

Solving the original optimization problem

Here we solve the problem

min Z max(d; — D% Q)
i¢T

s.t. d = Ab
di > D™ Vi e T
0<b; <B"™V1<i<n

[4]:  dtumor = cp.Variable(tumor, 'dtumor')
dother = cp.Variable(other, 'dother')
b = cp.Variable(n, 'b")
f = cp.maximum(dother - Dother, 0)
obj = cp.sum(f)



[4] :

cons = [Aother @ b == dother, Atumor @ b == dtumor, dtumor >= Dtarget, b >= 0,
—Bmax >= b]

problem = cp.Problem(cp.Minimize(obj), cons)

problem.solve(verbose = True, solver = cp.ECOS)

CVXPY
vi.4.2

(CVXPY) Mar 19 06:40:33 PM: Your problem has 800 variables, 5 constraints, and O
parameters.

(CVXPY) Mar 19 06:40:33 PM: It is compliant with the following grammars: DCP,
DQCP

(CVXPY) Mar 19 06:40:33 PM: (If you need to solve this problem multiple times,
but with different data, consider using parameters.)

(CVXPY) Mar 19 06:40:33 PM: CVXPY will first compile your problem; then, it will
invoke a numerical solver to obtain a solution.

(CVXPY) Mar 19 06:40:33 PM: Your problem is compiled with the CPP
canonicalization backend.

(CVXPY) Mar 19 06:40:33 PM: Compiling problem (target solver=ECOS).
(CVXPY) Mar 19 06:40:33 PM: Reduction chain: Dcp2Cone -> CvxAttr2Constr ->
ConeMatrixStuffing -> ECOS

(CVXPY) Mar 19 06:40:33 PM: Applying reduction Dcp2Cone

(CVXPY) Mar 19 06:40:33 PM: Applying reduction CvxAttr2Constr

(CVXPY) Mar 19 06:40:33 PM: Applying reduction ConeMatrixStuffing

(CVXPY) Mar 19 06:40:33 PM: Applying reduction ECOS

(CVXPY) Mar 19 06:40:33 PM: Finished problem compilation (took 1.760e-02
seconds) .

(CVXPY) Mar 19 06:40:33 PM: Problem status: optimal

(CVXPY) Mar 19 06:40:33 PM: Optimal value: 1.388e+00

(CVXPY) Mar 19 06:40:33 PM: Compilation took 1.760e-02 seconds

(CVXPY) Mar 19 06:40:33 PM: Solver (including time spent in interface) took
1.676e-01 seconds

1.3882005424049697



[5]:

#d
d =
for

for

plt

np.concatenate (np.array(dother.value), np.array(dtumor.value))

[0] * (tumor+other)

i in range (tumor) :

d[i] = dtumor.value[il

i in range(other):
d[i+tumor] = dother.valuel[i]

.hist(d, bins=225)

plt.
plt.

xticks(np.arange(0, 2.25, 0.25))
show ()

50 +

40

30 +

20 4

10 1

0 - T T
0.00 025 050 075 1.00 1.25 1.50

Solving the (coverted) linear optimization problem

min }::ui
i¢T
s.t. d = Ab
d; > D%¥reet v ¢ T
0<b; <B"™V1<i<n
0<wu;V1<i<m,i¢T
di — DM <, V1<i<m,idT.




[6]:

u = cp.Variable(other, 'u')

dtumor = cp.Variable(tumor, 'dtumor')

dother = cp.Variable(other, 'dother')

b = cp.Variable(n, 'b')

f = cp.maximum(dother - Dother, 0)

obj = cp.sum(f)

cons = [Aother @ b == dother, Atumor @ b == dtumor, dtumor >= Dtarget, b >= 0,
—Bmax >= b, u >= 0, u >= dother - Dother]

problem = cp.Problem(cp.Minimize(obj), cons)

problem.solve(verbose = True, solver = cp.ECO0S)

CVXPY
vi.4.2

(CVXPY) Mar 19 06:40:33 PM: Your problem has 1200 variables, 7 constraints, and
0 parameters.

(CVXPY) Mar 19 06:40:33 PM: It is compliant with the following grammars: DCP,
DQCP

(CVXPY) Mar 19 06:40:33 PM: (If you need to solve this problem multiple times,
but with different data, consider using parameters.)

(CVXPY) Mar 19 06:40:33 PM: CVXPY will first compile your problem; then, it will
invoke a numerical solver to obtain a solution.

(CVXPY) Mar 19 06:40:33 PM: Your problem is compiled with the CPP
canonicalization backend.

(CVXPY) Mar 19 06:40:33 PM: Compiling problem (target solver=ECOS).
(CVXPY) Mar 19 06:40:33 PM: Reduction chain: Dcp2Cone -> CvxAttr2Constr ->
ConeMatrixStuffing -> ECOS

(CVXPY) Mar 19 06:40:33 PM: Applying reduction Dcp2Cone

(CVXPY) Mar 19 06:40:33 PM: Applying reduction CvxAttr2Constr

(CVXPY) Mar 19 06:40:33 PM: Applying reduction ConeMatrixStuffing

(CVXPY) Mar 19 06:40:33 PM: Applying reduction ECOS

(CVXPY) Mar 19 06:40:33 PM: Finished problem compilation (took 2.240e-02
seconds) .

(CVXPY) Mar 19 06:40:33 PM: Problem status: optimal

(CVXPY) Mar 19 06:40:33 PM: Optimal value: 1.388e+00

(CVXPY) Mar 19 06:40:33 PM: Compilation took 2.240e-02 seconds

(CVXPY) Mar 19 06:40:33 PM: Solver (including time spent in interface) took



[6]:

[71:

1.834e-01 seconds

1.3882005424141164

#d = np.concatenate(np.array(dother.value), np.array(dtumor.value))

d = [0] * (tumor+other)
for i in range(tumor):

d[i] = dtumor.value[i]
for i in range(other):

d[i+tumor] = dother.value[i]
plt.hist(d, bins=225)
plt.xticks(np.arange(0, 2.25, 0.25))
plt.show()

50 +

40 -

30 +

20 4

10 1

0

T T T T
0.00 025 050 075 1.00 1.25 1.50 175

So both of these optimization problems give the same solution.




